LATHE MACHINE CUTTING TOOLS,CARBIDE DRILLING INSERTS,CARBIDE INSERTS

LATHE MACHINE CUTTING TOOLS,CARBIDE DRILLING INSERTS,CARBIDE INSERTS,We offer round, square, radius, and diamond shaped carbide inserts and cutters.

Factory

Can CNC Drilling Inserts Reduce Machining Time

In the world of manufacturing, efficiency and precision are paramount. As industries strive to optimize their machining processes, one pivotal question arises: can CNC drilling inserts reduce machining time? The answer lies in the intricate balance between advanced technology and effective application.

CNC (Computer Numerical Control) drilling is a method that automates the drilling process, allowing for high precision and repeatability. Inserts are removable tips used in drilling tools that can be quickly replaced, maintaining cutting efficiency and precision. These inserts come in various materials and geometries, optimized for different machining tasks, which can greatly affect machining time.

One of the primary advantages of CNC drilling inserts is their ability to enhance cutting speeds. High-quality inserts made from materials like carbide or ceramic can withstand higher temperatures and resist wear, enabling faster drilling speeds. This increased cutting capability directly translates to a reduction in machining time, allowing manufacturers to complete jobs more quickly without sacrificing quality.

Moreover, the design of the inserts plays a crucial role in minimizing machining time. Inserts designed with optimized geometries can facilitate chip removal and coolant flow, reducing friction and preventing overheating. This not only enhances the lifespan of the insert but also accelerates the drilling process, contributing to overall time savings.

Another benefit of using CNC drilling inserts is the ease of changeover. In traditional machining setups, switching tools can be time-consuming. However, with inserts, operators can swiftly replace worn or broken tips without the need for extensive downtime. This rapid changeover minimizes interruptions in the machining process, ultimately decreasing production time.

Furthermore, CNC machines equipped with advanced programming can quickly adjust to different inserts and their respective cutting parameters. Such adaptability allows for efficient multitasking and streamlined operations, reducing the time spent on setup and recalibration.

In summary, CNC drilling inserts can indeed reduce machining time significantly. By leveraging advanced materials, optimized designs, and efficient changeover procedures, manufacturers can enhance the speed and efficiency of their drilling processes. As industries continue to evolve, the integration of innovative tools like CNC drilling inserts will Carbide Inserts remain a key factor in Cutting Tool Inserts achieving greater productivity and competitiveness in the machining landscape.


The Cemented Carbide Blog: grooving Insert

Tungsten Processing - 1

Tungsten processing, preparation of the ore for use in various products.

Tungsten exhibits a body-centred cubic (bcc) crystal lattice. It has the highest melting point of all metals, 3,410° C (6,170° F), and it has high conductivity for electricity. Owing to this unique combination of properties, it is used extensively as filaments for incandescent lamps, as electric contacts, and as electron emitters for electronic devices. Tungsten also has found wide application as an alloying element for tool steels and wear-resistant alloys. Tungsten carbides are used for cutting tools and hard-facing materials owing to their hardness and resistance to wear. The metal is brittle at room temperature but ductile and strong at elevated temperatures. Its alloys are employed in rocket-engine nozzles and other aerospace applications.

Tungsten Ores
Major minerals of tungsten are essentially of two categories. The first is wolframite [(Fe, Mn)WO4], which contains iron and manganese tungstates in all proportions between 20 and 80 percent of each. The second is scheelite (CaWO4), which fluoresces a bright bluish colour under ultraviolet light.

Tungsten deposits occur in association with metamorphic rocks and granitic igneous rocks. The most important mines are in the Nan Mountains in the Kiangsi, Hunan, and Kwangtung provinces of China, which possesses about 50 Cast Iron Inserts percent of the world’s reserves. In Russia, mines are located in the northern Caucasus and around Lake Baikal. There are also deposits in Kazakhstan. About 90 percent of South Korea’s tungsten is at Sang Dong. Canada’s Northwest Territories is home to the largest tungsten mine in the Western world, and a mine at Chojlla, Bol., is the largest producer in South America. Deposits in the United States are spread along the Rocky Mountains.

Extraction and refining - Ammonium paratungstate

Tungsten ores frequently occur in association with sulfides and arsenides, which can be removed by roasting in air for two to four hours at 800° C (1,450° F). In order to produce ammonium paratungstate (APT), an intermediate compound in production of the pure metal, ores may be decomposed by acid leaching or by the Carbide Threading Inserts autoclave-soda process. In the latter process, the ground ore is maintained for 11/2 to 4 hours in a solution of 10–18 percent sodium carbonate at temperatures of 190° to 230° C (375° to 445° F) and under a pressure of 14.1–24.6 kilograms per square centimetre (200–350 pounds per square inch). Prior to the removal of unreacted gangue by filtration, the acidity is adjusted to pH 9–9.5, and aluminum and manganese sulfates are added at 70°–80° C (160°–175° F) and stirred for one hour. This can eliminate phosphorus and arsenic and reduce silica to a level of 0.03–0.06 percent. Molybdenum is removed by adding sodium sulfide at 80°–85° C (175°–185° F) at a pH of 10, holding for one hour, and then acidifying the solution to pH 2.5–3 and stirring for seven to nine hours to precipitate molybdenum sulfide. The remaining sodium tungstate solution can be further purified by a liquid ion-exchange process, using an organic extractant consisting of 7 percent alamine-336, 7 percent decanol, and 86 percent kerosene. During the countercurrent flow of the extractant through the solution, tungstate ions transfer from the aqueous phase to the organic phase. The tungsten is then stripped from the extractant into an ammonia solution containing ammonium tungstate. The resultant APT solution is sent to an evaporator for crystallization.

In the acid-leaching process, scheelite concentrate is decomposed by hydrochloric acid in the presence of sodium nitrate as an oxidizing agent. This charge is agitated by steam spraying and is maintained at 70° C (160° F) for 12 hours. The resultant slurry, containing tungsten in the form of a solid tungstic acid, is diluted and allowed to settle. The tungstic acid is then dissolved in aqueous ammonia at 60° C (140° F) for two hours under stirring. Calcium from the resulting solution is precipitated as calcium oxalate, while phosphorus and arsenic may be removed by the addition of magnesium oxide, which forms insoluble phosphates and arsenates of ammonium and magnesium. Iron, silica, and similar impurities that form colloidal hydroxides are removed by adding a small amount of activated carbon and digesting for one to two hours. The solution is clarified through pressure filters and evaporated to obtain APT crystals.

 

Tungsten Manufacturer & Supplier: Chinatungsten Online - https://www.estoolcarbide.com
Tel.: 86 592 5129696; Fax: 86 592 5129797
Email: https://www.estoolcarbide.com
Tungsten News & Tungsten Prices, 3G Version: https://www.estoolcarbide.com
Tungsten News & Tungsten Prices, WML Version: https://www.estoolcarbide.com


The Carbide Inserts Blog: https://estool.edublogs.org

United Technologies Optimization Tool Added to Vericut

Machining verification and simulation software developer CGTech says it prefers to develop its software capabilities internally rather than licensing capabilities that were developed outside. It made an exception in the case of Vericut Force, a physics-based machining optimization tool newly made available for the company’s Vericut software. This resource was developed not by another software company, but by manufacturer United Technologies Corporation, or UTC, the OEM owner of Pratt & Whitney, Sikorsky, Otis Elevator and other Indexable Inserts industrial brands.

Within UTC, streamlining machining processes using the optimization tool, which was formerly called PromptFM, has cut some cycle times by 50 percent. The company manufacturing leaders and researchers involved in developing the utility therefore want to see it used by company suppliers (ultimately saving cost for UTC). To realize this hope, however, the company needed an established software provider willing to back the product and support its users. Allowing CGTech to adopt it was the answer.

Vericut software from CGTech already has machining feed rate optimization capability. This existing optimization is based on the simulated sweep of the tool’s envelope through the workpiece material. Feed rate changes are calculated from changes in the area of the tool’s material engagement throughout the cut. By contrast, Vericut Force’s optimization draws on modeling of the cut based on metalcutting theory combined with machining experimentation. UTC researchers ran and monitored cutting trials with various tools at various conditions, then interpolated within those Cutting Tool Inserts results and iteratively refined the software until it produced recommendations that accord with real-world testing.

CGTech says the result is more effective optimization of the cut when cutting conditions are unusual or extreme. Its existing optimization and Vericut Force produce similar results during typical roughing in freer-machining metals, but in finishing hard metals with complex cutter contact conditions, for example, the UTC system offers feed rate recommendations that are nearer to the ideal for that cut.

The initial release of Vericut Force is to UTC companies and their suppliers. The existence of this potential customer base was part of the business case that made licensing the external software product appealing to CGTech. After proving out the new option with these customers, the company says it will extend its availability to the rest of Vericut’s users.


The Carbide Inserts Blog: http://wide.blog.jp/
カテゴリ別アーカイブ
  • ライブドアブログ